NULLX Leader in Targeted Protein Modulation

Targeted Protein Degraders As Next Generation Antibody Payloads Degrader Antibody Conjugate (DAC) Discovery

Gwenn M. Hansen, Ph.D. Chief Scientific Officer

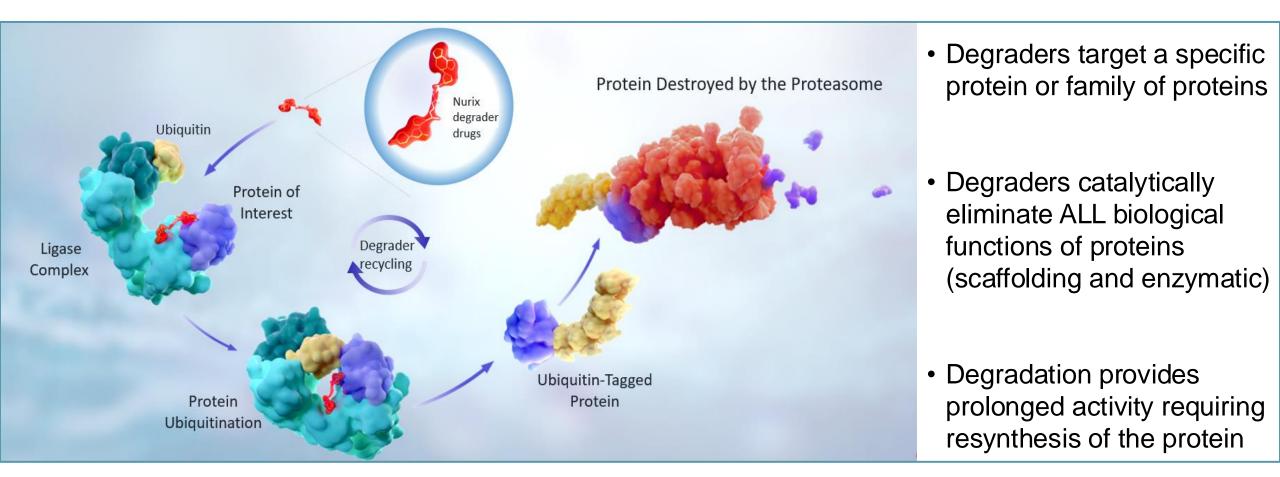
ADC & Radiopharmaceuticals Pharma & Biotech Partnering Summit September 10, 2024 Boston, MA

Important notice and disclaimers

This presentation contains statements that relate to future events and expectations and as such constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. When or if used in this presentation, the words "anticipate," "believe," "could," "estimate," "expect," "intend," "may," "outlook," "plan," "predict," "should," "will," and similar expressions and their variants, as they relate to Nurix Therapeutics, Inc. ("Nurix", the "Company," "we," "us" or "our"), may identify forward-looking statements. All statements that reflect Nurix's expectations, assumptions or projections about the future, other than statements of historical fact, are forward-looking statements, including, without limitation, statements regarding our future financial or business plans; our future performance, prospects and strategies; future conditions, trends, and other financial and business matters: our current and prospective drug candidates: the planned timing and conduct of the clinical trial programs for our drug candidates; the planned timing for the provision of clinical updates and initial findings from our clinical studies; the potential benefits of our collaborations, including potential milestone and sales-related payments; the potential advantages of our DELigaseTM platform and drug candidates; the extent to which our scientific approach, our DELigaseTM platform, targeted protein modulation, and Degrader-Antibody Conjugates may potentially address a broad range of diseases; the extent animal model data predicts human efficacy; the timing and success of the development and commercialization of our current and anticipated drug candidates; and our ability to fund our operations into the second half of 2026. Forward-looking statements reflect Nurix's current beliefs, expectations, and assumptions. Although Nurix believes the expectations and assumptions reflected in such forward-looking statements are reasonable, Nurix can give no assurance that they will prove to be correct. Forward-looking statements are not guarantees of future performance and are subject to risks, uncertainties and changes in circumstances that are difficult to predict, which could cause Nurix's actual activities and results to differ materially from those expressed in any forward-looking statement. Such risks and uncertainties include, but are not limited to: (i) risks and uncertainties related to Nurix's ability to advance its drug candidates, obtain regulatory approval of and ultimately commercialize its drug candidates; (ii) the timing and results of clinical trials; (iii) Nurix's ability to fund development activities and achieve development goals; (iv) risks and uncertainties relating to the timing and receipt of payments from Nurix's collaboration partners, including milestone payments and royalties on future potential product sales; (v) the impact of macroeconomic events and conditions, including increasing financial market volatility and uncertainty, inflation, increasing interest rates, instability in the global banking system, uncertainty with respect to the federal budget and debt ceiling, the impact of war, military or regional conflicts, and global health pandemics, on Nurix's clinical trials and operations; (vi) Nurix's ability to protect intellectual property and (vii) other risks and uncertainties described under the heading "Risk Factors" in Nurix's Quarterly Report on Form 10-Q for the fiscal guarter ended May 31, 2024, and other SEC filings. Accordingly, readers are cautioned not to place undue reliance on these forward-looking statements. The statements in this presentation speak only as of the date of this presentation, even if subsequently made available by Nurix on its website or otherwise. Nurix disclaims any intention or obligation to update publicly any forward-looking statements, whether in response to new information, future events, or otherwise, except as required by applicable law.

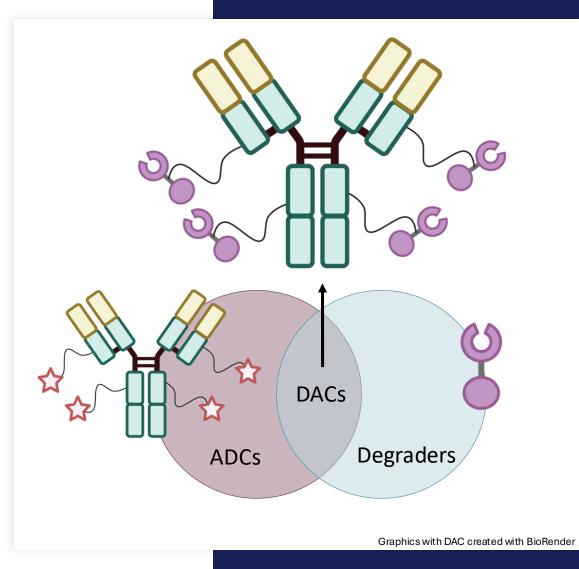
Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while we believe our own internal estimates and research are reliable, such estimates and research have not been verified by any independent source.

Nurix Is a Clinical-Stage Targeted Protein Degrader Company With a Track Record of Successful Discovery Partnerships


- Three wholly-owned protein modulation drugs in clinical development
- Fully integrated research and development organization
- Ability to prosecute a growing internal and partnered pipeline, including three multi-target discovery collaborations with Gilead, Sanofi, and Pfizer

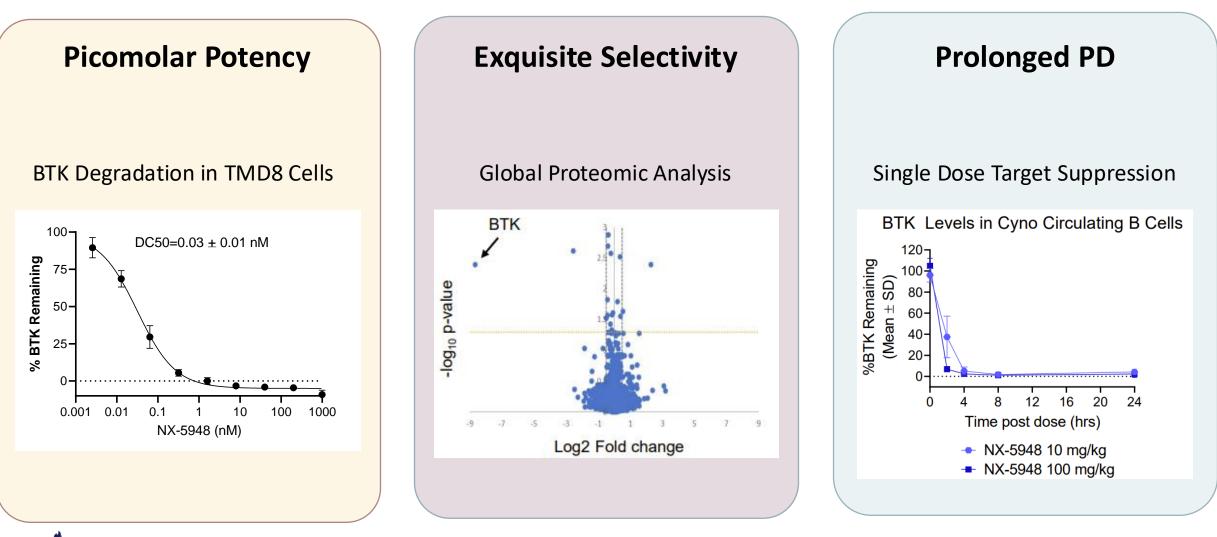
MOA	Oncology program	Target	Therapeutic area	Discovery – Lead Op	IND enabling	Phase 1a	Phase 1b
TPD	NX-5948	ВТК	B-cell malignancies	ell malignancies			
	NX-2127	BTK-IKZF	B-cell malignancies				
TPE	NX-1607	CBL-B	Immuno-Oncology				
TPD	Multiple	Undisclosed	Undisclosed				
	Multiple	Undisclosed	Undisclosed				🧭 GILEAD
	Multiple	Undisclosed	Undisclosed				sanofi
DAC	Multiple	Undisclosed	Oncology				P fizer
MOA	l&l program	Target	Therapeutic area	Discovery – Lead Op	IND enabling	Phase 1a	Phase 1b
TPD	NX-5948	ВТК	Inflammation / autoimmune				
	NX-0479 / GS-6791	IRAK4	Rheumatoid arthritis and other inflammatory diseases				🚺 GILEAD
	STAT6 degrader	STAT6	Type 2 inflammatory diseases				sanofi
	Undisclosed	Undisclosed	Inflammation / autoimmune				sanofi

TPD: Targeted Protein Degradation; TPE: Targeted Protein Elevation; DAC: Degrader Antibody Conjugate


Targeted Protein Degradation Harnessing the ubiquitin proteasome system to eliminate disease-causing proteins

Advancing a New Therapeutic Class

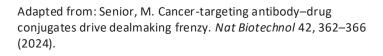
Degrader Antibody Conjugates (DACs)

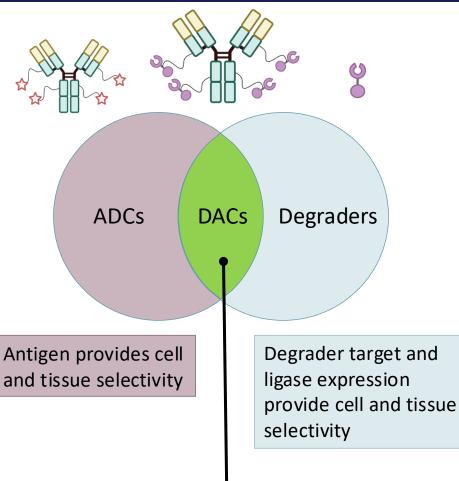

- DACs combine the catalytic activity of a Targeted Protein Degrader (TPD) with the tissue specificity of an antibody
- DACs represent a next generation of antibody drug conjugate (ADC) technology with the potential for enhanced efficacy and improved safety

Degraders Offer Many Potential Advantages as Antibody Payloads

	Ligase Complex POI				
Superior potency	 Catalytic, event-driven pharmacology One degrader can degrade many protein molecules 				
Superior selectivity and safety profile	 Optimization for ternary complex formation and efficient target ubiquitylation allows degraders to achieve enhanced selectivity Requires lower drug exposure, avoiding occupancy-driven off-target pharmacology 				
Durable coverage	• Protein resynthesis (rather than drug clearance) is required to restore target function				
Broad target opportunities	 Unlike an inhibitor, a degrader can address both the enzymatic and non-enzymatic functions of a protein Including targets that are previously thought undruggable 				
Ligases offer additional selectivity	 The combination of differential expression and varying activity levels of E3 ligases potentially offers another layer of cell and tissue selectivity 				

Degraders Provide Many Potential Advantages Over Traditional ADC Payloads

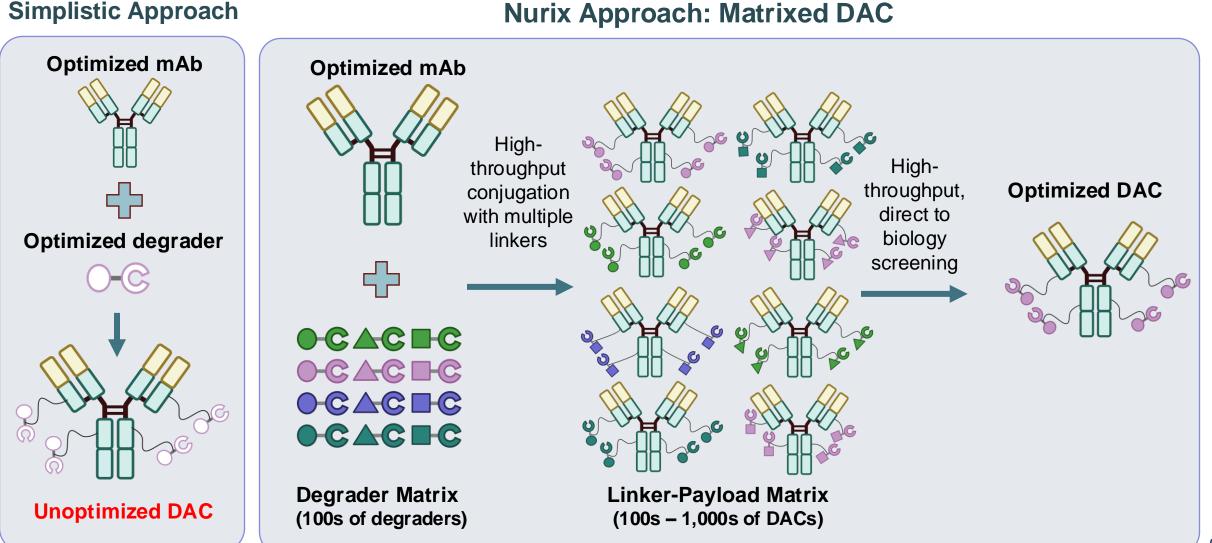



nurix Example from our clinical-stage BTK degrader NX-5948

The DAC Modality Unlocks New Targets, Enhances Selectivity, and Offers the Potential for a Broader Range of Therapeutic Indications

FDA approved ADCs

ADC	Payload	Payload MOA
Mylotarg Besponsa Enhertu Trodelvy Zynlonta	calicheamicin calicheamicin topoisomerase topoisomerase PBD dimer	DNA damage
Adcetris Kadcyla Padcev Polivy Tivdak Blenrep Aldixi Elahere	MMAE emtansine MMAE MMAE MMAE MMAF MMAE DM4	Microtubule inhibition
Lumoxiti Akalux	bacterial toxin photosensitizer IR700	Other

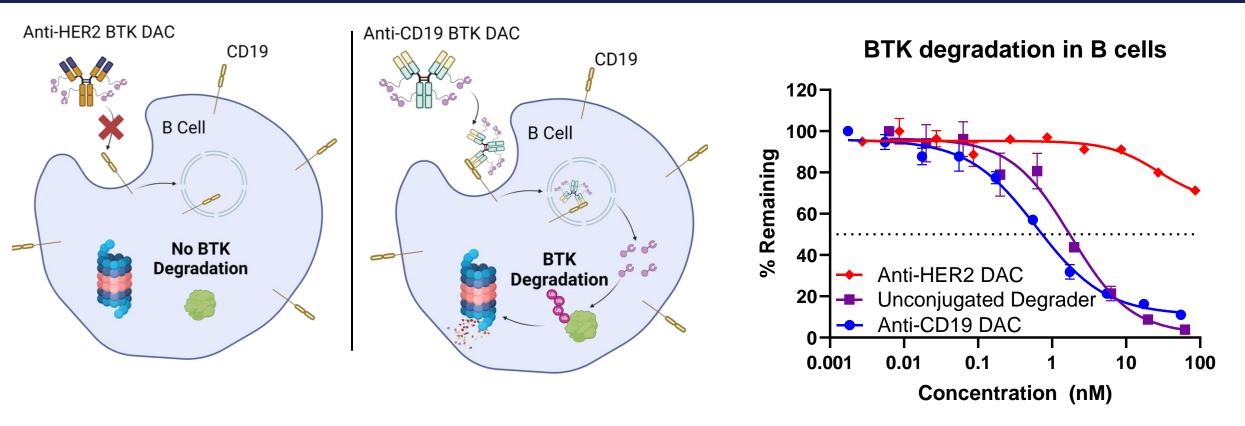


Growing list of bifunctional degraders in the clinic

Degrader Name	Target	Indication	
ARV-102	LRRK2	Neurology	
ARV-471	ER	Oncology	
ARV-766	AR	Oncology	
ASP3082	KRAS G12D	Oncology	
BGB-16673	ВТК	Oncology	
CC-94676	AR	Oncology	
CFT-1946	BRAF V600E	Oncology	
CFT-8634	BRD9	Oncology	
CG001419	NTRK	Oncology	
DT-2216	BCL-xL	Oncology	
FHD-609	BRD9	Oncology	
GT20029	AR	Oncology	
HP518	AR	Oncology	
HSK29116	ВТК	Oncology	
KT-253	MDM2	Oncology	
KT-333	STAT3	Oncology	
KT-474	IRAK4	Immunology	
NX-2127	BTK, IKZF1/3	Oncology	
NX-5948	ВТК	Oncology / I&I	
PRT3789	SMARCA2	Oncology	

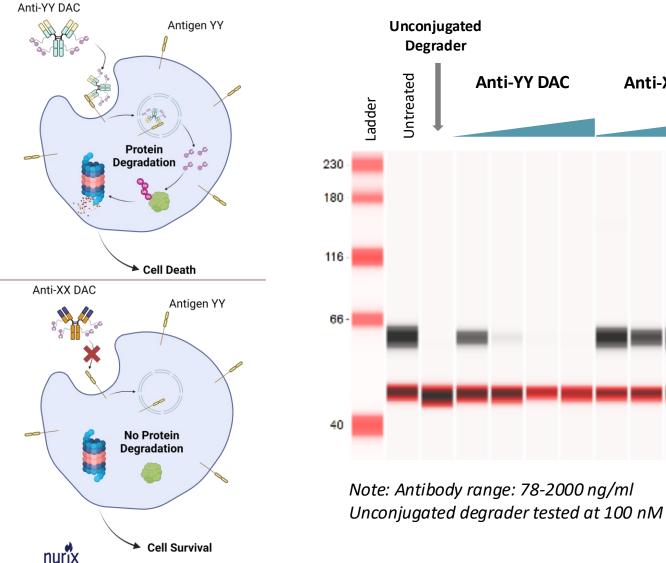
DACs provides multi-layer selectivity

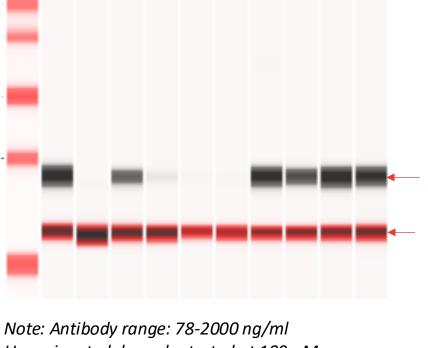
Next-Generation DAC Design Requires Multi-Parameter Optimization Agnostic assessment of design elements using matrix synthesis and screening



Fully Integrated Internal DAC Platform

Leveraging lessons learned from automated degrader discovery platform

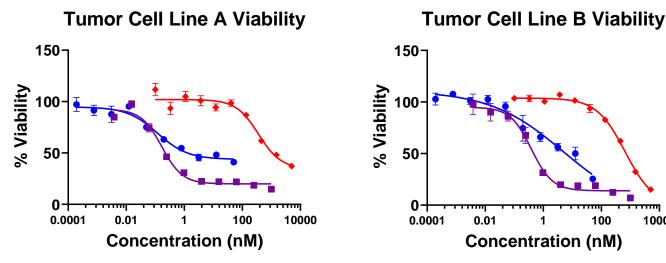

Multiple Techniques to Deliver & Screen Payloads	Linker & Degrader Synthesis	High-throughput Conjugation	Analytical Characterization	<i>In Vitro</i> Characterization
Leveraging cutting-edge technologies to screen and advance degraders for conjugation	Automated on-DNA & on- resin chemistry platform to generate linker and degrader-linker libraries	On-bead multi-step HT- conjugation & purification of DACs in a single workflow	Robust, plate-based bioanalytical methods to characterize DACs (LCMS, HIC & SEC)	High throughput cell- based platforms to characterize DAC molecules
Antibody shuttling Antibody shuttling Antibody shuttling Antibody shuttling Antibody (Portal) (Portal) (Portal) (Portal)			<figure></figure>	


Conjugation of a BTK Degrader to an Anti-CD19 Antibody Results in Highly Specific Degradation in CD19⁺ B Cells

- When a BTK degrader is conjugated to an anti-HER2 antibody and tested in CD19⁺/HER2⁻ B cells, the DAC is inactive
- When a BTK degrader is conjugated to an anti-CD19 antibody and tested in CD19⁺/HER2⁻ B cells, the DAC is as active as the free degrader

Antibody Delivery Confers Cell-Type Selective Protein Degradation

Anti-XX DAC


- Cells express the antigen YY but ٠ not XX, allowing assessment of antigen-specific delivery of degrader conjugates
- Unconjugated degrader potently • eliminates the protein from cells (unconjugated degrader lane)

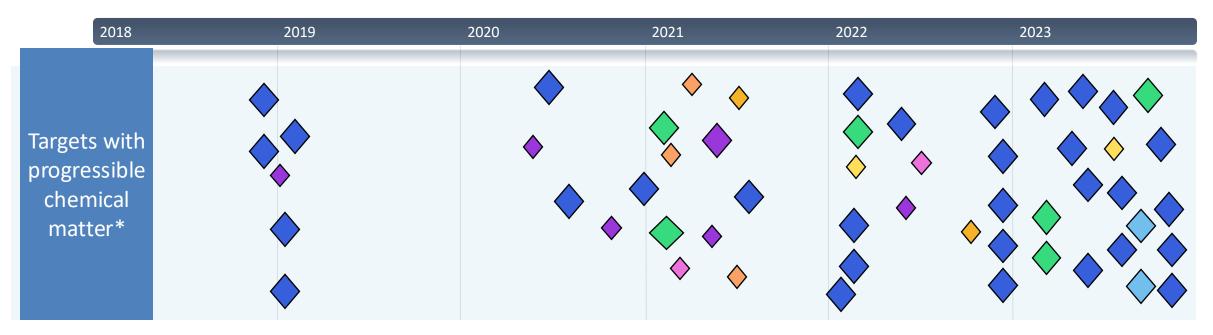
Protein of interest

β-actin • Only the Anti-YY DAC shows degradation of the protein in this cell type

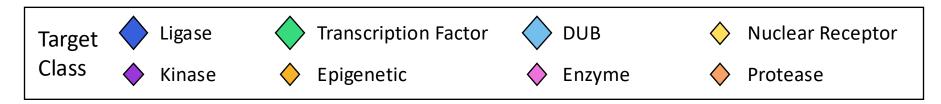
12

Cell-Type Selective DAC Demonstrates Superior Cell-Killing When Compared to an Approved Inhibitor

Tumor Cell Line A Tumor Cell Line B Compound Cell killing IC₅₀ (nM) Cell killing IC₅₀ (nM) FDA Approved 1071 713 Inhibitor 1.3 5.9 Anti-YY DAC Unconjugated 0.22 0.47 Degrader

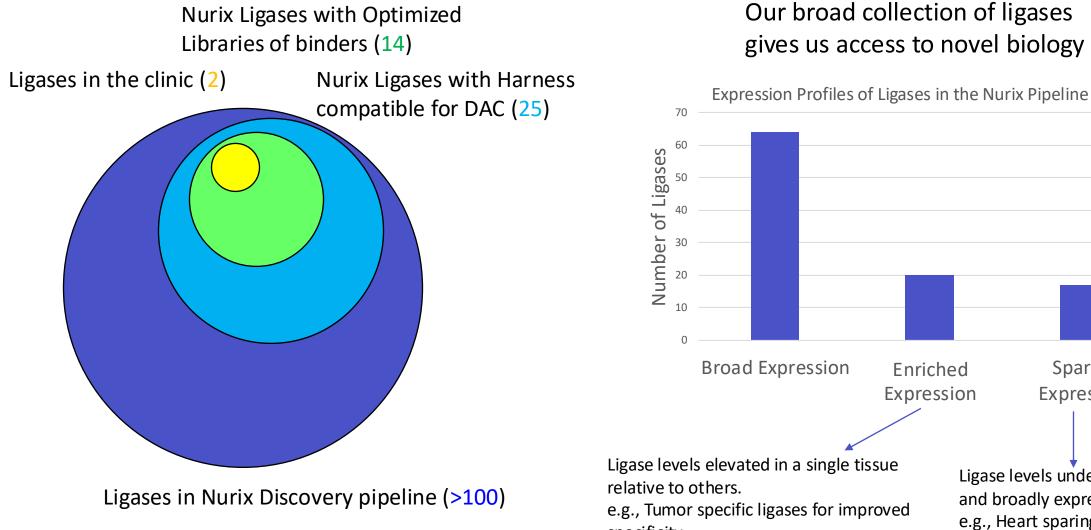

Cell viability measured using CellTiter-Glo assay.

- FDA Approved Inhibitor -
- Anti-YY DAC
- Unconjugated Degrader -8-
- Unconjugated degrader and DAC show more potent cell killing in both tumor cell lines
- The DAC molecule is >800- and >100-fold more potent than the approved target inhibitor in tumor cells line A and B, respectively

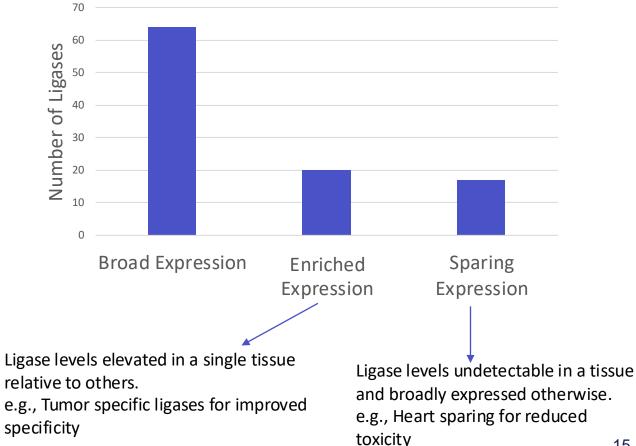

10000

13

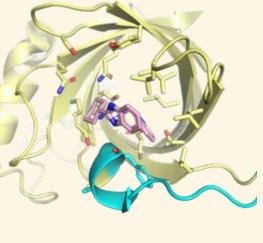
Nurix's DELigase Platform Enables Efficient Discovery of Ligands for Many Challenging to Drug Proteins, Including E3 Ligases



*All series validated by ≥ 2 orthogonal assays



Enhancing Tissue Selectivity Through Broader Access of Ligase Space


Our broad collection of ligases gives us access to novel biology

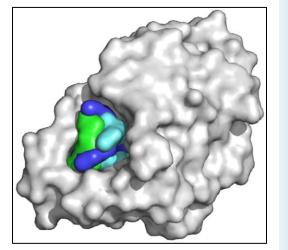
Conferring Platelet Sparing Profile to Novel DACs Through DEL Discovery

Substrate-bound and PFI-7 ligand bound structures share a common conformation *

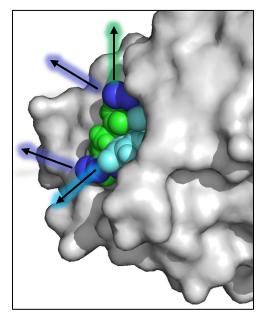
No degradation of BRD4 observed with literature GID4 binder PFI-7

PFI-7 bound structure

nuríx

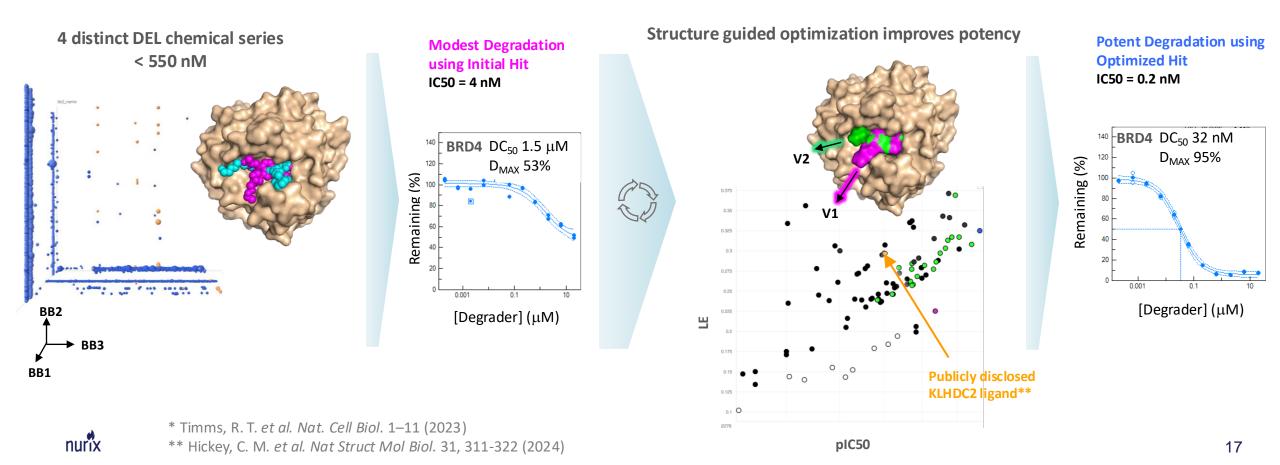

Nurix DEL Screens identified a series that bind in a confirmation distinct from substrate bound receptor & PFI-7

Nurix GID4 binders induce BRD4 degradation suggesting conformation is amenable to degradation

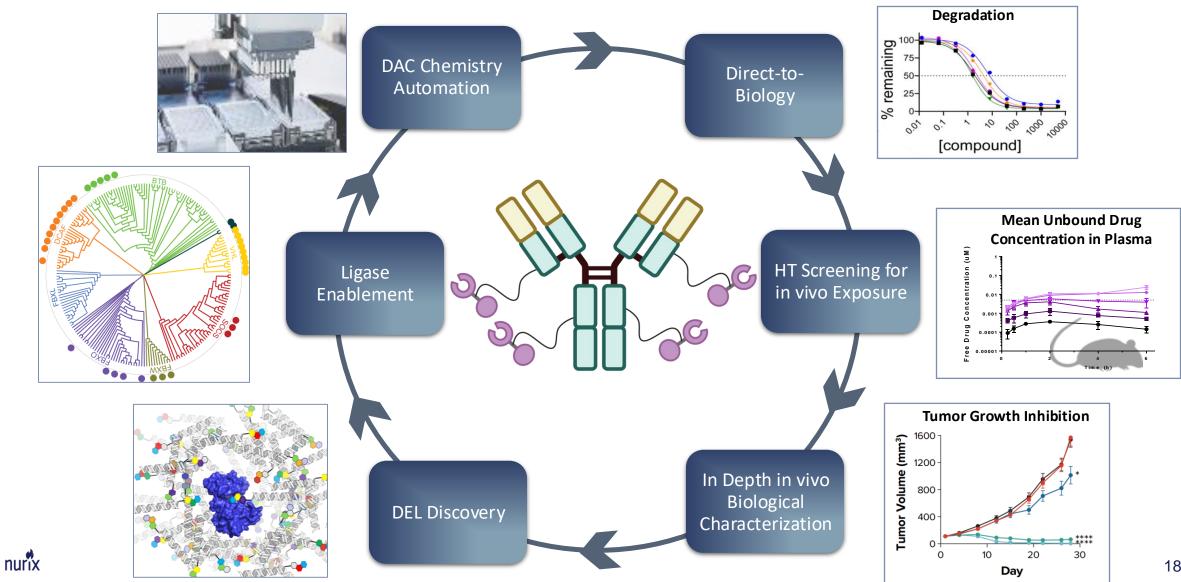


- *GID4 is broadly active on diverse targets with Pro/N-degrons**
- Tissue sparing expression profile
- GID4 Degraders could spare platelets to further augment antibody selectivity, improving therapeutic index of DAC

Multiple DEL series confirmed in active binding conformation

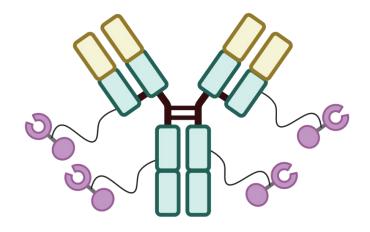


Second generation designs explore & optimize alternate linker attachment vectors while maintaining active conformation



Expanding Ligase Toolbox for Degraders Could Enhance DAC Payload PK

- The KLHDC2 ligase degrades a broad spectrum of cellular proteins by recognizing a Gly-Gly C-end degron*
- Nurix's KLHDC2 binders contain a free carboxylic acid
- As a DAC payload, KLHDC2 degraders may show enhanced cellular PK, further improving the therapeutic index of DAC


Our Integrated Discovery Platform is Helping us Learn the Rules of DAC Design to More Rapidly Create Next-Generation Conjugate Drugs

18

The DAC Advantage

- Pairing exquisitely targeted "knockout" biology with the cell-type and tissue selectivity of antibodies
- Potential for improved therapeutic index and broader applicability than standard ADCs
- Moving beyond oncology to tackle potentially any protein target in any tissue

